Tarea 4 Unidad 3.

50. Un tren que viaja inicialmente a 16m/s se acelera constantemente a razón de 2m/s². ¿Qué tan lejos viajará en 20s? ¿Cuál será su velocidad final?

DATOS FORMULAS SUSTITUCION RESULTADOS $Vo=16\text{m/s} \qquad s = Vot + \frac{1}{2}at^2 \qquad s=(16\text{m/s}^2)(20\text{s}) + \frac{1}{2}(2\text{m/s}^2)(20\text{s})^2 \qquad \underline{s=720\text{m}}$ $a=2\text{m/s}^2$ $S_{20s}=? \qquad a = \frac{Vf-Vo}{t} \qquad Vf=at+Vo \qquad \underline{Vf=56\text{m/s}}$ $Vf=? \qquad Vf=(2\text{m/s}^2)(20\text{s}) + 16\text{m/s}$

51. En una prueba de frenado, un automóvil se detiene en 3s. Si su velocidad inicial era de 60km/h, ¿cuál era su aceleración y cuál fue su distancia de frenado?

DATOS FORMULAS CONVERSIONES SUSTITUCION Y RESULTADOS t=3sVo=60Km/h 60Km 1000m 1h $a=-5.555 \text{m/}s^2$ $s=\frac{0+16.666 \text{m/}s}{2}(3\text{s})$ a=? =16.666m/s $s = \frac{Vf + Vo}{2}$ s=? 1h 1Km 3600s Vf=0 s=24.99m

52. Se lanza hacia abajo un ladrillo desde lo alto de un edificio de 80ft. Justo antes de que se estrelle contra el piso, tiene una velocidad descendente de 90ft/s. ¿Cuál era la velocidad inicial del ladrillo?